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ABSTRACT 

We consider the estimation of hydrological 
parameters through inverse modeling of 
hydrological (tracer) data and/or geophysical 
(electrical resistivity) data associated with 
experiments from the shallow unconfined 
uranium-contaminated aquifer at the DOE 
Integrated Field Research Challenge (IFRC) site 
at Rifle, Colorado. The purpose of this study, 
which draws on examples from recent and 
ongoing research, is to highlight the degree to 
which certain modeling decisions impact 
inversion results. Through synthetic examples 
based on field experiments with real-world 
complexities, we focus on decisions related to 
(1) how heterogeneity and other hydrological 
features are parameterized, and (2) how 
geophysical monitoring data are incorporated.  

INTRODUCTION 

Obtaining estimates of hydrological properties 
through inverse modeling requires decisions of 
great consequence to be made on how to 
parameterize heterogeneity (i.e., how to 
represent a heterogeneous distribution using a 
limited number of parameters that are amenable 
to estimation) and how to include different types 
of measurements in a model. Inadequate 
parameterization of heterogeneity or other 
hydrological features leads to errors in the model 
structure that are partly compensated for by 
biased property estimates, which may allow for 
an improved fit to the calibration data but lead to 
incorrect interpretations of hydrological 
phenomena and reduce the ability of the model 
to make reliable predictions. The manner in 
which observations are integrated in inverse 
modeling is similarly important. If the procedure 
for simulating measurements is not consistent 
with the true measurement process, then the 
resulting property estimates may be biased.  

 
The purpose of this study is to highlight the 
degree to which certain modeling decisions can 
affect inverse modeling results. Through 
synthetic examples based on field experiments 
with real-world complexities, we focus on two 
areas in particular: (1) how heterogeneity and 
other hydrological features are parameterized, 
and (2) how geophysical monitoring data are 
incorporated.  
 
An overview of the methodology and the field 
experiments that provide motivation for the 
study are given, followed by some examples and 
conclusions. 

METHODOLOGY 

The inverse modeling approach, as described by 
Kowalsky et al. (2012), consists of three main 
parts: a forward model, parameterization of 
heterogeneity and hydrological features, and an 
inverse modeling framework that integrates 
different types of data. In this study, TOUGH2 
(Pruess et al., 1999) provides the forward model 
used to simulate the flow and transport 
phenomena in the experiment and the 
corresponding measurements for a given set of 
input parameters.  
 
Simplifying assumptions made in the 
parameterization of heterogeneity must be 
carefully considered to insure they are adequate 
for a given application and consistent with site 
conditions (e.g., Moore and Doherty, 2006). A 
variety of approaches are available. A pixel-
based approach divides the model into discrete 
regions, often in a regularly spaced grid or 
layers, allowing for values at each pixel to be 
estimated through inversion. In the related 
zonation approach, uniform properties are 
assigned to model regions based on practical 
considerations or based on spatial information 
related to the geology that is available from 
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characterization data (e.g., geophysical data or 
core descriptions) to a varying degree of spatial 
coverage and accuracy. A geostatistical 
parameterization treats the heterogeneous 
property as a spatially correlated random field 
that is a function of the semivariogram and 
conditioning values at so-called pilot point 
locations estimated during inversion. Various 
aspects of these parameterization approaches or 
combinations thereof are considered in the 
examples given below. 
 
The inverse modeling framework used here is 
iTOUGH2 (Finsterle, 2004). It provides capa-
bilities for parameter estimation, error analysis 
and uncertainty propagation for TOUGH2 and 
other linked forward models, including geo-
physical models. Suitable geophysical measure-
ments are made a function of properties that are 
simulated in the TOUGH2 forward model and, 
therefore, a function of the hydrological input 
parameters. In other words, iTOUGH2 allows 
for coupled inversion of hydrological and geo-
physical data (or hydrogeophysical inversion). A 
variety of geophysical measurements have been 
integrated into iTOUGH inversions, including 
time-lapse ground-penetrating radar, electrical 
resistivity, and seismic (Kowalsky et al., 2004, 
2005, 2008, 2010, 2011).  
 
Geophysical monitoring data can be included in 
hydrological inversions in different ways (e.g., 
Hinnell et al., 2010). In one approach, the 
geophysical observations are directly simulated 
based on TOUGH2 state variables at a given 
time and compared to the measured values as 
part of the calibration procedure. A 
petrophysical model converts the TOUGH2 state 
variables to the input needed for the geophysical 
simulation. For example, Archie’s law (1942) 
relates porosity, saturation, and fluid electrical 
conductivity—which itself is a function of the 
concentration of dissolved mass components—
to bulk electrical resistivity, the input property 
needed for an electrical resistivity simulation. 
Commer et al. (2012) present an example, which 
is also related to this study, using this approach. 
 
In a second approach, traditional geophysical 
tomography is performed as a pre-processing 
step.  The  resulting  tomogram  of  the  relevant  

geophysical property is then used as spatially 
distributed calibration data in the inversion, 
typically also requiring a petrophysical model to 
relate the simulated hydrological response to the 
geophysical tomogram. While the sequential 
application of geophysical tomography and 
hydrological inversion is a straightforward 
means for incorporating geophysical data, errors 
that are commonly introduced in the tomography 
procedure (such as smoothing or streaks in the 
image) may cause the hydrological parameter 
estimates to be biased, as is demonstrated in an 
example below. 

OVERVIEW OF FIELD EXPERIMENTS 

The examples in this study were motivated by 
experiments at the U.S. Department of Energy 
(DOE) Integrated Field Research Challenge Site 
(IFRC) at Rifle, Colorado in a shallow 
unconfined aquifer that was contaminated from 
uranium mill tailings. The aquifer is 2.5 to 3 m 
thick, and is located on the floodplain of the 
Colorado River in alluvium situated above an 
impermeable bedrock formation. A main 
objective at the IFRC site has been to perform 
biostimulation experiments for uranium 
remediation through the injection of acetate. 
Nonreactive (i.e., conservative) tracers are 
typically also injected into the groundwater to 
aid in characterization of the transport processes 
and properties of the subsurface. Detailed 
descriptions of the IFRC site and related field 
experiments are given elsewhere (Anderson et 
al., 2003; Vrionis et al., 2005; Yabusaki et al., 
2007; Williams et al., 2011). In the examples 
given below, we consider the “Winchester” 
experiment of 2007 (Williams et al., 2011), and 
the “Best Western” experiment of 2011. 
 
Understanding subsurface heterogeneity is key 
to analyzing complex biogeochemical reactions 
such as those occurring in these field 
experiments. Heterogeneity is expected to have a 
large impact on the efficacy of biostimulation. 
Thus, developing, testing, and analyzing 
techniques for estimating heterogeneous 
properties based on limited characterization 
data, such as tracer concentrations, core data, 
and geophysical data, continues to be a critical 
research topic in hydrogeology.  
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EXAMPLE 1. PARAMETERIZING 
HETEROGENEITY  

A recent study by Kowalsky et al. (2012) on 
inverse modeling of synthetic and actual field 
data from the Winchester experiment highlights 
some issues related to parameterization, and 
forms the basis for discussion in this example. 
The experiment involved the injection of 
groundwater amended with acetate, to induce 
biostimulation, and sodium bromide, to act as a 
conservative tracer and allow for investigation 
of hydrological properties at the site. The 
amended groundwater was injected into 10 wells 
(shown with triangles in Figure 1) situated 
perpendicularly to the direction of groundwater 
flow, and the time-varying concentrations were 
measured in 12 down-gradient monitoring wells 
(shown with circles in Figure 1).  
 
To investigate how various choices related to the 
parameterization of heterogeneity in such a 
system can affect inverse modeling results, a 
hydrological model was developed to simulate 
the experiment and the measurements. Based on 
a permeability distribution generated in GSLIB 
(Deutsch and Journel, 1992) using Gaussian 
sequential simulation (SGSIM), synthetic 
bromide concentration data were simulated for 
different sampling intervals and noise levels. 
Figure 2 shows a best-case scenario data set with 
high temporal sampling and no added noise. The 
permeability distribution, as shown in Figure 1a, 
represents the true model for the synthetic study. 
Snapshots of the concentration at several times 
are shown in Figure 3.  
 
When characterization data related to the spatial 
distribution of geological properties or facies are 
available (e.g., from geophysical data, well 
logging data or core descriptions), it is naturally 
of interest to incorporate this information into a 
hydrological model. For this purpose, a zonation 
parameterization may be used in which each 
zone or facies is modeled with uniform 
properties that are measured somehow or 
estimated through inversion. To explore some 
aspects of this approach, several facies “data 
sets” were derived from the true permeability 
distribution—with varying resolution, coverage, 
and accuracy—and used for inversion.  
 

 
Figure 1. Inversion of synthetic data with zones or 

“facies” information of varying accuracy 
and completeness. (a) True permeability. 
Inversion with the geometry of (b) three 
zones known perfectly, (c) five zones 
known perfectly, (d) slightly inaccurately, 
and (e) perfectly but only for the well 
region with core data. (f) Inversion with 
geometry of five zones known in the well 
region, and pilot points used elsewhere. 

 
Figure 2. Noise-free bromide concentrations used as 

synthetic data (symbols), fit by inversion 
with a homogeneous model (solid gray 
line) and by inversion with a geostatistical 
parameterization (black lines show mean 
with +/- 2 standard deviations).  
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Figure 3. Bromide concentration at several times.  

For the case in which facies data comprise 3 
zones (permeability ranges), the inversion is not 
able to obtain a good fit between the simulated 
and measured (synthetic) data, and the resulting 
parameter estimates are inaccurate (Figure 1b), 
revealing an inadequate parameterization. On 
the other hand, when the facies data comprise 5 
zones, inversion provides a nearly perfect data 
fit and accurate parameter estimates (Figure 1c). 
Introducing a small amount of error in the facies 
geometry, by introducing 50 cm shifts in the 
geometry in 2 m by 2 m regions, considerably 
worsens the parameter estimates (Figure 1d). 
When the facies data are without error but 
limited to the region near the wells where core 
data are available, then the parameter estimates 
are again poor (Figure 1e). However, combining 
the facies data from the limited region with a 
geostatistical parameterization, in which pilot 
point values are also estimated in the inversion, 
allows for accurate parameter estimates (Figure 
1f). Thus, accounting for errors in the zonal 
geometry and properly parameterizing regions 
where no information is available (e.g., up-
gradient of the injection wells) is clearly 
important for accurate inverse modeling results. 
 
Implementing pilot points in a geostatistical 
parameterization must also be done with care. 
Rather than placing pilot points throughout the 

entire model domain, a practitioner might 
choose to reduce the number of unknowns by 
modeling the region up-gradient (to the left) of 
the wells using a uniform zone with a single 
unknown parameter. However, the estimated 
permeability distribution is then inaccurate 
(Figure 4a) and does not allow for an adequate 
fit to the data. When the region is modeled with 
unconditional heterogeneity (i.e., reflecting the 
correct spatial correlation structure but not 
controlled by pilot points), the data fit and the 
parameter estimates are similarly not optimal 
(Figure 4c). The best inversion results are 
achieved by also including pilot points in the up-
gradient region (Figure 4e). 
 
Kowalsky et al. (2012) provide metrics to 
further quantify improvement between cases. 
Deteriorating experiment conditions, variable 
porosity, and errors in the semivariogram and 
gradient direction are also considered, as is 
application to the field data and a 3D model. 
 

 
Figure 4. Sensitivity of geostatistical inversion to 

the parameterization in the region up-
gradient (to the left) of the injection and 
monitoring wells. The region is 
parameterized with (a) one zone of 
uniform permeability, (b) unconditional 
heterogeneity (no pilot points), and (c) 
two columns of pilot points. Figure 1a 
shows the true permeability model. 



 - 5 - 

EXAMPLE 2. INCORPORATING 
GEOPHYSICAL MONITORING DATA  

This second example is motivated by the Best 
Western experiment which sought to study, 
among other things, the impact of prolonged 
bicarbonate injection on metal oxyanion (U, As, 
V, Se, Mo) mobility. In one portion of the area 
used for this experiment (plot C at the IFRC 
site), sodium bicarbonate was injected into the 
groundwater, having the added benefit of 
serving as an electrically conductive tracer 
(while not strictly conservative, it can be 
considered as a tracer to a first approximation). 
Electrical conductivity (EC) measurements were 
regularly made on fluid samples from the 
monitoring wells. In addition, crosshole 
electrical resistance tomography (ERT) data 
were collected at a number of times. 
 
A hydrological model, representing a 2D vertical 
plane aligned with the direction of groundwater 
flow, was constructed for the vicinity of the 
bicarbonate injection (Figure 5). The model 
includes the vadose zone in the upper 3 meters 
and a saturated zone in the lower 3 meters (only 
the saturated zone is depicted). The top 
boundary is given by constant atmospheric 
pressure, while the bottom is a no-flow 
boundary. A gradient is added to the constant 
hydrostatic pressure specified on the side 
boundaries to induce lateral groundwater flow. 
The amended groundwater is injected into a 
high-permeability well at x = 3 m.  
 
A hypothetical model is considered with simple 
layered heterogeneity given by a zone of higher 
log permeability (-10.5) between 4.2 and 5.3 m 
depth and a moderately lower log permeability (-
11) elsewhere. Figure 5 shows the simulated 
fraction of bicarbonate in the groundwater, and 
the locations of monitoring wells M1–M4. Note 
the fast path causing lower concentrations and 
faster breakthrough at ~4.5 m depth. The density 
of the injected fluid is higher than the resident 
groundwater, as seen with the higher fraction 
sinking toward the bottom of the model. 
 
Fluid EC measurements were simulated in the 
monitoring wells (Figure 6). As the monitoring 
wells are screened in the saturated zone, each 
simulated measurement represents the average 
EC value in the saturated zone. 

 
Figure 5. Fraction of injected fluid at (a) 30, (b) 70 

and (c) 110 days after the start of 
injection. The locations of monitoring 
wells (M1 to M4) and the region 
corresponding to the idealized ERT data 
(magenta line) are shown in (a). 

 
Figure 6. Fluid EC data at monitoring wells M1 to 

M4. The (synthetic) data are shown with 
symbols while inversion results are shown 
with solid and dashed lines for the 
inversion cases with EC and ERT data 
smoothed at 0.5 m and 1.1 m, 
respectively. 

Intentionally idealized time-lapse ERT data were 
“simulated” for cases with increasing distortion 
to mimic the smoothing that is expected in ERT 
tomography (Figure 5 shows the region that is 
considered to contain ERT data). The images in 
the left column of Figure 7 represent the most 
ideal case in which ERT tomography images 
perfectly reflect the spatial variations in 
electrical conductivity resulting from the 
injected fluid. 
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Figure 7. Intentionally idealized (synthetic) time-lapse ERT data. The images in the left column represent the most 

ideal case, the true distribution (i.e., the ERT tomography images perfectly reflect the spatial variations 
in electrical conductivity resulting from the injected fluid) at three times. The middle and right columns 
are increasingly smoothed versions of the true distribution obtained with a moving average of 0.5 m 
(middle column) and 1.1 m (right column), respectively; they are also considered idealized in the sense 
that real ERT tomography results would undoubtedly be more corrupted with imaging artifacts and 
affected by measurement noise. The quantity shown is the electrical conductivity [µS/cm], defined as the 
inverse of electrical resistivity. 

The middle and right columns are increasingly 
smoothed versions of the true distribution 
obtained with a moving average of 0.5 m 
(middle column) and 1.1 m (right column), 
respectively. While they represent tomograms 
with error having been introduced in the 
tomography procedure, in actuality, these cases 
are still considered idealized in the sense that 
real ERT tomography results would undoubtedly 
be more corrupted with imaging artifacts and 
affected by measurement noise.  
 
Figure 8 shows results for hydrogeophysical 
inversion using the EC data (Figure 6) and the 
idealized ERT data (Figure 7) together. With a 
pixel-based (or layered) parameterization, a total 
of 9 unknown parameters are estimated, 
including 8 log permeability values for different 
depth ranges and also a parameter from the 
petrophysical model (the cementation exponent 
m of Archie’s law). With the most ideal case in 
which the ERT map perfectly represents the true 
distribution of the electrically conductive tracer, 
the parameter estimates are correct. But when 
including the ERT  data with a small  amount  of  

error (middle column of Figure 7), whether 
starting the inversion with the unknown 
parameters set to the true values or set to initial 
guesses of -10.75, the parameter estimates are 
biased (see Figures 8a and 8b, respectively), 
having moved away from the true values.  When 
more significant smoothing is present in the 
ERT data (right column in Figure 7), the 
parameter estimates become even more 
inaccurate (see Figure 8).  
 
These results highlight the importance of 
choosing a proper method for including 
geophysical data in a hydrogeophysical 
inversion. When implementing tomograms 
directly as calibration data, even for idealistic 
cases, errors inherent to geophysical tomography 
can introduce bias or inaccuracy into the 
hydrological parameter estimates. However, as 
has been demonstrated (Commer et al., 2012), 
when using the approach in which the 
geophysical measurements themselves are 
simulated directly in the inversion, such bias is 
overcome and improved results are obtained. 
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Figure 8. True and estimated log permeability values when starting with the initial guesses (a) set to the true values 

and (b) set uniformly to -10.75. The m value of Archie’s law was also estimated. 

CONCLUSIONS 

One of the main difficulties in building biogeo-
chemical models for complex field experiments 
continues to stem from uncertainty in the basic 
heterogeneous hydrological properties, such as 
permeability and porosity. Thus, testing, 
improving, and refining techniques for estimat-
ing such properties remains an essential research 
topic in hydrogeology.  
 
We presented examples intended to highlight the 
importance of decisions made in the process of 
parameterizing heterogeneity and incorporating 
data into a hydrogeophysical inversion. Some 
observations of interest are as follows: When 
incorporating spatial data, like geometry inferred 
from core descriptions or geophysical data, 
uncertainty in such data must be accounted for, 
and parameterization in regions without data 
coverage must be done carefully, otherwise 
biased estimates of hydrological parameters may 
result. In a geostatistical parameterization, a 
variety of considerations are necessary, such as 
the coverage and spacing of pilot points.  
 
 
 

Incorporating time-lapse geophysical monitoring 
data has long been viewed as a promising way to 
supplement limited hydrological measurements 
with more spatially extensive and cost effect 
information. But the manner in which geophysi-
cal data are introduced into an inverse modeling 
framework determines whether they will in fact 
improve hydrological parameter estimates or 
introduce bias. Calibrating a hydrological model 
with a geophysical image that contains errors 
from tomography (smoothing and streaks) may 
be less effective than directly simulating the 
geophysical measurements in a coupled fashion 
within the inversion, as has been demonstrated 
here and by others (Hinnell et al., 2010; 
Commer et al., 2012).  
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